skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Minzer, Dor"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 15, 2026
  2. Free, publicly-accessible full text available November 1, 2025
  3. Santhanam, Rahul (Ed.)
    We study the complexity of affine Unique-Games (UG) over globally hypercontractive graphs, which are graphs that are not small set expanders but admit a useful and succinct characterization of all small sets that violate the small-set expansion property. This class of graphs includes the Johnson and Grassmann graphs, which have played a pivotal role in recent PCP constructions for UG, and their generalizations via high-dimensional expanders. We show new rounding techniques for higher degree sum-of-squares (SoS) relaxations for worst-case optimization. In particular, our algorithm shows how to round "low-entropy" pseudodistributions, broadly extending the algorithmic framework of [Mitali Bafna et al., 2021]. At a high level, [Mitali Bafna et al., 2021] showed how to round pseudodistributions for problems where there is a "unique" good solution. We extend their framework by exhibiting a rounding for problems where there might be "few good solutions". Our result suggests that UG is easy on globally hypercontractive graphs, and therefore highlights the importance of graphs that lack such a characterization in the context of PCP reductions for UG. 
    more » « less
  4. Kumar, Amit; Ron-Zewi, Noga (Ed.)
    We study parallel repetition of k-player games where the constraints satisfy the projection property. We prove exponential decay in the value of a parallel repetition of projection games with a value less than 1. 
    more » « less